suchitav.com

Shielding of cable


Braided Shield
A braided shield is applied by braiding bunches of copper strands called picks around the insulated, electrostatically shielded center conductor. The braided shield offers a number of advantages. Its coverage can be varied from less than 50% to nearly 97% by changing the angle, the number of picks and the rate at which they are applied. It is very consistent in its coverage, and remains so as the cable is flexed and bent. This can be crucial in shielding the signal from interference caused by radio-frequency sources, which have very short wavelengths that can enter very small “holes” in the shield. This RF-shielding superiority is further enhanced by very low inductance, causing the braid to present very low transfer impedance to high frequencies. This is important when the shield is supposed to be conducting interference harmlessly to ground. Drawbacks of the braided shield include restricted flexibility, high manufacturing costs because of the relatively slow speed at which the shield-braiding machinery works, and the laborious “picking and pigtailing” operations required during termination.

Serve Shield (spiral-wrapped)
A serve shield, also know as a spiral-wrapped shield, is applied by wrapping a flat layer of copper strands around the center in a single direction (either clockwise or counter-clockwise). The serve shield is very flexible, providing very little restriction to the “bendability” of the cable. Although its tensile strength is much less than that of a braid, the serve’s superior flexibility often makes it more reliable in “real-world” instrument applications. Tightly braided shields can be literally shredded by being kinked and pulled, as often happens in performance situations, while a spiral wrapped serve shield will simply stretch without breaking down. Of course, such treatment opens up gaps in the shield, which can allow interference to enter. The inductance of the serve shield is also a liability when RFI is a problem; because it literally is a coil of wire, it has a transfer impedance that rises with frequency and is not as effective in shunting interference to ground as a braid. From a cost viewpoint, the serve shield requires less copper, is much faster and hence cheaper to manufacture, and is quicker and easier to terminate than a braided shield. It also allows a smaller overall cable diameter, as it is only composed of a single layer of very small (typically 36 AWG) strands. These characteristics make the copper serve shield a very common choice for audio cables such as the Pro Co (XLR20) XLR 20.

Foil Shield
A foil shield is composed of a thin layer of Mylar-backed aluminum foil in contact with a copper drain wire used to terminate it. The foil shield/drain wire combination is very cheap, but it severely limits flexibility and indeed breaks down under repeated flexing. Foil’s 100% coverage advantage is largely compromised by its high transfer impedance (aluminum being a poorer conductor of electricity than copper), especially at low frequencies.





Related

COMMENT Uncategorized







EDUCATION

INSURANCE


CONTACT
FAVORITE
SITEMAP
VLSI COMPANIES IN BANGALORE
VLSI INTERVIEW QUESTION RFSIR.COM